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Abstract

Sensitivity analysis quantifies the dependence of a system’s behavior on the parameters that could possibly affect the
dynamics. Calculation of sensitivities of stochastic chemical systems using Kinetic Monte Carlo and finite-difference-based
methods is not only computationally intensive, but direct calculation of sensitivities by finite-difference-based methods of
parameter perturbations converges very poorly. In this paper we develop an approach to this issue using a method based
on the Girsanov measure transformation for jump processes to smooth the estimate of the sensitivity coefficients and make
this estimation more accurate. We demonstrate the method with simple examples and discuss its appropriate use.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The growing emphasis on experiment design issues and the development of increasingly sophisticated sim-
ulation techniques for the study of complex problems in industrial engineering, operations research, econom-
ics [1,2] and recently biological sciences [3–9] have challenged existing computational methodologies and have
required researchers to develop methods for the estimation of sensitivity of models to variation or uncertainty
in model parameters: if a small change in a parameter results in relatively large changes in the outcomes, the
outcomes are said to be sensitive to that parameter. This may mean that this type of parameter has to be deter-
mined very accurately. Parameters to which a model’s behavior exhibits a small sensitivity do not need rigor-
ous measurements and are likely not good control points of the system behavior, while parameters with high
sensitivity must be measured more exactly to achieve an accurate model and may be the points of control in
model dynamics [10,11]. Sensitivity analysis plays a key role in implementation response surface techniques

which use low-degree polynomials to model system responses as functions of active parameters [12,13].
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In this paper we develop an unbiased estimator for sensitivity analysis of stochastic systems. The method is
based on a general likelihood approach based on a Girsanov measure transformation without assumption on
the shape of the probability distribution of the system state. We present a simple extension of a popular algo-
rithm [14] for simulation of the chemical master equation that allows the efficient numerical calculation of
these sensitivities concurrently with the computation of sample paths for the system under study. We also pro-
vide guidelines as to when this method obtains better accuracy and computational efficiency than other
methods.

In Section 3 we describe the specific class of discrete event models relevant to the stochastic dynamics of
chemical reaction networks [15,14]. After that, in Section 4, we provide the construction of the family of
the jump-processes, indexed by the perturbation parameter. We demonstrate the method using simple exam-
ples and provide a straightforward algorithm to implement the method. Appendices A and B outline mathe-
matical details of the approach.
2. Definitions and background

We suppose that the behavior of the stochastic system depends on a set of parameters and can be expressed
as a family of Markov processes {X(t), t P 0} with values in some multidimensional space. Specific examples
of dynamics governing X(t) will be outlined later on.

We assume that the complexity of the system is such that it is necessary to use simulation to estimate the
behavior of the system for each set of parameter values. Given a set of observation points on the time interval
[0,T], 0 < t1 6 t2 6 � � � 6 tM = T, a set of model parameters k and an initial condition X(0) = x, we consider
the quantity whose sensitivity to parameters we wish to estimate:
uðx; kÞ ¼ E½F ðXðt1Þ; . . . ;XðtMÞÞjXð0Þ ¼ x;k� ð1Þ
where the random variable F is the function of the underlying X(t) process at different observation points.
Since the system is multidimensional, a priori analytical solutions are usually out of reach and Eq. (1) is esti-
mated via a Monte Carlo approach. The evaluation of u(x,k) via Monte Carlo is a standard procedure and has
been widely studied for many types of systems, see for example the following monographs [15,16].

To explore the behavior of a system under variation of values of model parameters and to estimate the rel-
ative importance of the initial values, sensitivity analysis applies small changes to the nominal values of model
parameters or initial values and investigates change in the values of the functionals of the type (1). In partic-
ular, sensitivity analysis quantifies the local dependence of system behavior on parameters and we will be inter-
ested in the sensitivity coefficients, i.e. derivatives of u(x,k) with respect to the initial conditions or model
parameters [17].

A very popular and straightforward approach to estimation of sensitivity coefficients is to compute, by
Monte Carlo simulation, the finite difference approximation for the differentials. To simplify the discussion,
let us assume that one is interested in computing the sensitivity coefficient with respect to the vector of param-
eters k. To calculate the finite difference one has to compute an estimator for u(x,k) and an estimator for
u(x,k(1 + e)), where e = (0, . . . ,�, . . . , 0) and we use shortcut notation k(1 + e) for the vector with components
(. . . ,ki�1,ki(1 + �), ki+1, . . . ) i.e. perturbation is applied in the direction of only one component of the vector k.
For small enough �, the estimator for the sensitivity coefficient based on the traditional finite forward differ-
ence scheme is:
douðx; kÞ=o� ¼ uðx; kð1þ eÞÞ � uðx; kÞ
�

ð2aÞ
The problem is that the meaning of the phrase ‘‘small enough �’’ is not completely clear. First of all, that the
estimator based on the finite difference scheme (2a) has a glaring weakness of being biased with the bias pro-
portional to O(�). In addition to that it possess a certain variance which decreases with the increase of the
numbers of samples N used in the Monte Carlo simulation. It was shown by Glynn in [18], see also [19], that
if the simulations of the two estimators for u(x,k) and u(x,k(1 + e)) are drawn independently, then the best
possible convergence rate, to the exact value, is of the order N�1/4 with the optimal choice of � which in this

case is � � N�1/5. If one uses the symmetric difference scheme



726 S. Plyasunov, A.P. Arkin / Journal of Computational Physics 221 (2007) 724–738
douðx; kÞ=o� ¼ uðx; kð1þ e=2ÞÞ � uðx; kð1� e=2ÞÞ
�

ð2bÞ
then the overall rate of convergence is N�1/3 [19]. Unfortunately, these optimal rates of convergence cannot be
achieved in certain cases. Severe problems arise in the case when the functional of interest does not have
smooth derivatives. This is the case, for example, when F(X) is a discrete type functional and does not have
a smooth derivative, e.g. F(X) = 1 if and only if X belongs to some subset A of a multidimensional state space
and 0, otherwise.

To overcome this limitation, one might use an explicit form of the density function p(X1, . . . ,XM,k) of the
underlying variable X and express the derivative with respect to parameters k by averaging over $klogp(Æ,k).
This leads to the so called likelihood method introduced by Glynn [20], see also Boyle, Broadie and Glasserman
[2,21]. For example, if function F = F(X1, . . . ,XM) depends upon the values of the process X(Æ) at points
0 6 t1, . . . , tM 6 T, then the derivative with respect to the model parameters can be calculated in the following
way:
rkuðx; kÞ ¼ rk

Z
dX1 . . .

Z
dXM F ðX1; . . . ;XMÞpðX1; . . . ;XM ; kÞ

¼ E½F ðX1; . . . ;XMÞrk log pðX1; . . . ;XM ; kÞ� ð3Þ
i.e. it essentially puts dependence upon the parameter into the underlying probability density. This method has
been applied by Gunawan et al. In [22] to sensitivity analysis of some discrete event systems of biological and
chemical interest. This method can bring down the order of the error to N�1/2 but at the cost of requiring a
specific form of the multi-point distribution p(X1, . . . ,XM;k). This form cannot be found exactly in many real-
istic situations.

We will seek a solution which is similar in spirit to the method mentioned above, i.e. we shall search for an
explicit form for a set of weight functions, W(Æ), which permits us to express the sensitivity coefficients as
weighted, probably path dependent, averages of the functionals:
ruðx; kÞ ¼ E½F ðXðt1Þ; . . . ;XðtMÞÞ � W ðXð0 6 t 6 T ÞÞ� ð4Þ
however, we will not assume any specific form of p(Æ,k) as in the likelihood method. We will call this estimator
weighted scheme estimator. The weigh function W(Æ) appeared in the equation above is generally called the
Malliavin weight, as an expression similar to that of (4) can be obtained from the integration by parts formula
of Malliavin calculus (see monographs [23–25] for authoritative reference).

3. Sensitivity analysis of a specific class of systems

Without loss of generality, here we focus on a specific class of discrete events systems: the subset of models
which describe the stochastic dynamics of chemical reaction networks. Here state variables are numbers of
molecules of different molecular species Xi, i = 1, . . . ,S involved in different chemical reactions in the system.
To simplify the discussion, we consider the case of only one reaction. As we shall see later this does not inhibit
the generality of the results presented in this paper and can be easily extended to the case of the multiple reac-
tion channels indexed by r = 1, . . . ,R:
m�1rX1 þ m�2rX2 þ � � � þ m�SrXS!
ar mþ1rX1 þ mþ2rX2 þ � � � þ mþSrXS ð5Þ
Integer numbers m�ir represent the number of molecules of the species Si produced (+) and consumed (�) in reac-
tion (5). If we denote by X i 2 Zþ the number of molecules of the type Xi present in the system before the reaction
event in channel r then, after the reaction event, the number of molecules of this type in the system is:
X i ! X i þ ðmþi � m�ir Þ ð6Þ

Then, using mass balance, the dynamics of the number species Xi(t) can be represented as follows:
X iðtÞ ¼ X ið0Þ þ
XR

r¼1

DmirNrðtÞ; ð7Þ
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where Dmir ¼ mþir � m�ir and Nr(t) is the random variable representing the number of reaction events which took
place in the reaction channel up to time t (reaction extent [26]) with the initial condition Nr(0) = 0. Events take
place with state dependent transition rates also called propensity functions [26] ar(X) = krhr(X) P 0, where
hr(Æ) is function of the current state of the system [15,27], usually of a polynomial form. The transition rate
no longer describes the amount of chemical species being produced or consumed per unit interval of time
but rather the likelihood of a certain reaction to occur per unit time. As mentioned above, Kinetic Monte Car-
lo techniques [14] can be used to sample the number of events Nr(t) and state X(t). In Section 4, we consider
the importance sampling technique which will lead to the construction of the stochastic weights (4).

4. Perturbation analysis

In this section we discuss the sensitivity of functionals of type (1), defined on trajectories of the system (5),
with respect to the small perturbations in values of kinetic rates kr. The problem can be approached by looking
at the perturbed process and gradually taking the strength of the perturbation to 0.

To be specific, we consider the family of solutions {X�(t)}tP0 parameterized by �, j�j < 1. The parameter �
‘‘tunes’’ the reaction constant kr in the following way:
k�r ¼ krð1þ �Þ; ð8Þ

This perturbation changes the intensity of the counting process Nr(t) in channel r. Here we outline the main
result. It can be shown that the stochastic weights W(Æ) can be represented as derivatives of a certain martin-
gale process Z�(X(Æ)), oZ�/o�. More specifically, it turns out that the stochastic weights W(Æ) can be defined by
means of the counting process Nr(t) of the unperturbed system:
o

o�
u�ðxÞ ¼ E F ðXð�ÞÞoZ�

o�

����
�¼0

Xð0Þ ¼ x

� �
; ð9aÞ

W ,
oZ�

o�

����
�¼0

¼ NrðtÞ �
Z t

0

dsarðXðs�ÞÞ ¼ MrðtÞ ð9bÞ
Specific details of this procedure are presented in Appendix A. A Monte Carlo estimator can be readily obtained
from expressions (4) and (9) by replacing the probability measure with its weighted empirical counterpart:
dou�=o� ¼ 1

N

XN

j¼1

F ðjÞW ðjÞ ð10Þ
where F(j), j = 1, . . . ,N are the values of the function F(Æ) taken at specific time points of the trajectory
X(j)(0 6 t 6 T), and W(j) are weights computed along the same set of trajectories according to (9).

It is important to note that the estimator provided by the above equations is unbiased and this property
does not depend on the specific function F(Æ). This is an important difference from the finite-difference based
estimators, Eqs. (2a) and (2b). We note, however, that variance of this estimator depends on the functional
F(Æ). More details of this will be given in Appendix A and B. Before embarking on the numerical calculation
we note here, that the derivatives oZ�=o�; o2Z�=o�2, etc. do not depend on the functional F(Æ) itself and can be
calculated along with the traditional Kinetic Monte Carlo (KMC) simulation, such as those proposed in
[15,28,14]. The algorithm following Gillespie [14] is as follows:

(1) Initialize: X = X(0), t = 0.
(2) Select the index r 2 {1, . . . ,R} of the kinetic rate to be investigated with respect to the perturbation;
(3) Generate N indexed by j = 1. . .N; set M ðjÞ

r ¼ 0

While (t 6 T)
(a) At each state X(j)(t), compute a0ðXðjÞðtÞÞ ¼

PR
r0¼1ar0 ðXðjÞðtÞÞ

(b) s ¼ � 1
a0

lnð1� uÞ; u 2 Uð½0; 1ÞÞ-random variable, uniformly distributed on [0,1)
(c) Index r 0 of the next reaction event is given by transition probability vector {qr(X

(j)(t))}:

fqrðXðjÞðtÞÞg ¼
a1ðXðjÞðtÞÞ
a0ðXðjÞðtÞÞ

; . . . ;
aRðXðjÞðtÞÞ
a0ðXðjÞðtÞÞ

 !



728 S. Plyasunov, A.P. Arkin / Journal of Computational Physics 221 (2007) 724–738
(d) Update the state: X ðjÞi ðt þ sÞ ¼ X ðjÞi ðtÞ þ Dmir0 , t t + s
(e) If r = r 0 then DM ðjÞ

r ¼ 1� arðXðjÞðtÞÞs, otherwise DM ðjÞ
r ¼ �arðXðjÞðtÞÞs (see (9)).
(4) Compute the weighted average:
XN

j¼1

F ðXðjÞÞ;
XN

j¼1

F ðXðjÞÞM ðjÞ
r

We will not pursue the extensive investigation of the second order sensitivity coefficients o2u�/o�2 but they
follow straightforwardly from the second derivative of Z�:
o
2u

o�2
¼ E F ðXðt1Þ; . . . ;XðtmÞÞ

o
2Z�

o�2

����
�¼0

� �
; ð11aÞ

o2Z�

o�2

����
�¼0

¼ NrðtÞðN rðtÞ � 1Þ þ
Z t

0

arðXðs�ÞÞds
� �2

� 2NrðtÞ
Z t

0

arðXðs�Þds ð11bÞ
In the next section, we discuss a simple numerical example, investigate the accuracy and convergence of the
weighting method, and compare it with the forward difference scheme given by (2a) for two different types
of functionals F(X(Æ)).
5. Numerical experiment

In our first example, we consider a one specie reaction scheme:
ð. . .Þ!k2
X!k1 ; ð12Þ
which represents competing decay of X with the rate k1X and production with the rate k2. The probabilistic
description has one SDE:
dX ðtÞ ¼ dN 1ðtÞ � dN 2ðtÞ; ð13Þ

where N1,2(t) are the numbers of reaction events which took place in each channel up to time t.

This simple example may be solved analytically for the time-dependent probability density p(X, t) for the
system to be at the state with X molecules at the moment t [29]:
pðX ; tÞ ¼ ðkðtÞÞ
X

X !
expð�kðtÞÞ; ð14aÞ

kðtÞ ¼ X ð0Þe�k1t þ k2

k1

ð1� e�k1tÞ; 0 6 t 6 T ð14bÞ
We consider independent perturbations of the kinetic parameters of the above model:
k1ð�Þ ¼ k1ð1þ �Þ; k2ð�Þ ¼ k2ð1þ �Þ

and two types of functionals F(Æ) will be considered:
F ðX ð�ÞÞ ¼ X ðT Þ; ð15aÞ
F ðX ð�ÞÞ ¼ 1fa6X6bg; ð15bÞ
In Figs. 1a, 1b and 3a we present the comparison of the sensitivity coefficients computed via the direct differ-
ence method with � = 10�2 and the weighted scheme. Figs. 1a and 1b show that the method based on intro-
duction of the stochastic weights provides estimates of the same mean but smaller variance for the estimation
of the smooth functional F (15a). In Fig. 1a, the estimate of the sensitivity from the direct method at N = 104

samples is k1
ou
ok1
� �11:1896 (variance 61.3147) and that from the weighted scheme is k1

ou
ok1
� �11:2015 (var-

iance 2.4161). The weighted scheme converges faster and with less variance to the sensitivity estimate. The line
corresponding to the exact solution ((14): k1

ou
ok1
¼ �11:2820) is also plotted. In Fig. 1a the estimate of the sen-

sitivity from the direct method at N = 104 samples is k1
ou
ok1
� 9:8386 (variance 62.2378) and that from the



5000 10000 15000 20000

30
20

10
0

10
20

N, number of samples

k 1
 d

u(
k 1

,k
2)

/d
k 1

FD
Girsanov
exact

Fig. 1a. Comparison of computation of the sensitivity k1
ou
ok1
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weighted scheme is k1
ou
ok1
� 9:7932 (variance 1.5815). The weighted scheme converges faster and with less var-

iance to the sensitivity estimate. The line corresponding to the exact solution (14): k2
ou
ok2
¼ �11:2820) is also

plotted. The weighted scheme can also significantly outperform the direct difference method when F(Æ) is a
non-smooth functional (15b) providing an estimator with smaller variance. The estimate of the sensitivity
from the direct method at N = 104 samples (Fig. 3a) is k2

ou
ok2
� 0:3315 (variance 0.3047) and that from the

weighted scheme is k2
ou
ok2
� 0:3653 (variance 0.0008). The weighted scheme converges faster and with less var-

iance to the sensitivity estimate.
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Examination and comparison of Figs. 3a and 3b show that the functional F(Æ) is a constant, Fig. 2, over a
significant part of the state space (e.g. for parameters a = 1, b = 100 in Eq. (15b)). The estimate of the sensi-
tivity from the direct method at N = 104 samples, Fig. 3b, is k2

ou
ok2
� 0:00012 (variance 5.7 · 10�5) and that

from the weighted scheme is k2
ou
ok2
� �0:0103 (variance 0.0039). The direct scheme converges faster and with

less variance to the sensitivity estimate. In this situation, introduction of stochastic weights may increase the
variability of the estimator as demonstrated in Fig. 3b and may be not an advantageous strategy. See Appen-
dix B for details on this issue.

To illustrate the approach on a more complex system and functionals, we examined a simplified model of
activity and transcriptional regulation of PR promoter in bacteriophage k [30].

The PR promoter is an integral component of genetic circuit controlling the lysogeny vs lysis decision in the
k virus infection life-cycle in the bacterium E. coli [31]. The promoter PR controls the expression of the protein
Cro, while the activity of the promoter itself is controlled, in lytic phase, by the interaction of Cro-dimers
(Cro2) and RNA polymerase (RNAp) with the promoter control regions [30], Fig. 4. For illustration we
choose a highly simplified scheme for regulation of the PR promoter by Cro2 as follows:
OR þRNAP!
I

RNAP � OR; ð16aÞ

Cro2 þ OR ¢
I

Cro� OR1; ð16bÞ

Cro2 þ OR ¢
I

Cro� OR2; ð16cÞ

Cro2 þ Cro� O R1 ¢
I

Cro� OR; ð16dÞ

Cro2 þ Cro� OR2 ¢
I

Cro� OR; ð16eÞ

RNAP �OR!
a1 NCroþRNAP þ OR ð16fÞ
We should also stress that in (16) we have employed a rather simplified model of protein-DNA interactions
and translation/transcription. The preceding reactions assume a single molecule of DNA, OR containing
the promoter and operator sites which define PR. Cro2 can bind to one or two sites on OR: OR1 and OR2.
In the above model, for simplicity, we assert an ordered binding reaction for two site occupancy.

We assume, for example, that during RNAp binding (dissociation) events, both operator sites OR1 and OR2
become occupied (free) simultaneously. Assuming rapid equilibrium of reactions marked by a star symbol in
Eqs. (16a–e), complicated mechanisms of transcription and translation are collapsed into a single reaction
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(16f): for example, RNAp dissociation events also simultaneously produce N Cro protein monomers. The fol-
lowing thermodynamical model for the activity of the PR promoter (16) can be used [32]:
a1ðX 1;X 2;X 3Þ ¼ k1N
X 3

V e�DGRNAP
=RT

Z
; ð17Þ

Z ¼ 1þ X 2

V
e�

DGCroOR
1

RT þ X 2

V
e�

DGCroOR2
RT þ X 2

2

V
e�

DGCroOR12
RT þ X 3

V
e�DGRNAP

=RT ; ð18Þ
where the variables X1,2,3 denote numbers of Cro monomers, Cro dimers and RNAp, respectively, present in
the system at the given moment of time and the rest of the parameters are identified in Table 1. The activity
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Fig. 4. Schematic representation of the processes underlying the activity of PR promoter.

Table 1
Parameters for thermodynamical model Eq. (18) of PR activity. Number of RNAp molecules is assumed to be constant and equal 30
[39,31]

Parameter Value Annotation

k1 0.12 s�1 RNAp–DNA open complex formation rate [38]
k2 0.0025 s�1 Cro decay rate
k3 0.00037 s�1 Dimerization rate
k4 0.10 s�1 Monomerization rate
N 5 Number of Cro-monomers per RNA transcript
V 109 M�1 E. coli volume
RT 0.617 kcal/(mol K) Temperature
DGRNAp �20.0RT Gibbs energy of RNAp–PR interaction [39]
DGCroOR1 �17.5RT Gibbs energy of Cro2–OR1 interaction [39]
DGCroOR2 �17.5RT Gibbs energy of Cro2–OR2 interaction [39]
DGCroOR12 DGCroOR1 þ DGCroOR2
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defined above is essentially proportional to the probability that the RNAp is bound to the promoter. Param-
eters of the model obtained from the existing literature are summarized in Table 1.

In addition to the production of the Cro monomers there are processes of decay, dimerization and mono-
merization reactions:
Cro!a2
. . . ; ð19aÞ

2Cro!a3
Cro2; ð19bÞ

Cro2!
a4

2Cro; ð19cÞ
taking place with rates:
a2ðX 1;X 2;X 3Þ ¼ k2X 1; ð20aÞ

a3ðX 1;X 2;X 3Þ ¼
k3

2
X 1ðX 1 � 1Þ; ð20bÞ

a4ðX 1;X 2;X 3Þ ¼ k4X 2: ð20cÞ
Fig. 5 presents an instance of the stochastic trajectories of Cro and Cro2. In this example, we will be interested
in estimation of the statistical properties of the random time when the number of Cro dimers will cross a cer-
tain level Cro2 = b for a first time:
F ðXð�ÞÞ ¼ sb ¼ infft > 0 : X 2ðtÞ ¼ bg ð21Þ

Clearly, sb depends on the whole trajectory prior to the moment when X2 = b and an analytical expression for
distribution of the quantity sb is hard to obtain given the quite complex nature of the model. Monte Carlo
simulation provides us with the empirical distribution of this quantity as shown in Fig. 6.
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Fig. 6. Empirical distribution of the hitting time sb given the parameters of the model (Table 1) for b = 10.
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Assume now that some parameters of the model are uncertain, which is usually the case in a current mod-
eling study of transcriptional control. Specifically, we investigate the dependence of the mean value of the time
sb,
u ¼ EðsbjX 1ð0Þ ¼ 0;X 2ð0Þ ¼ 0Þ

with respect to perturbation in the parameters of protein–DNA interactions shown in Table 1:
DGCroOR1

RT
! DG CroOR1ð1þ �Þ

RT
; ð22aÞ

DGRNAp

RT
! DG RNApð1þ �Þ

RT
: ð22bÞ
The estimation of the derivatives ou
o�

for the case of (22) requires use of a more general perturbation scheme:
a�1ðXÞ � a1ðXÞ 1þ � o ln a�1ðXÞ
o�

� �
¼ a1ðXÞð1þ �g1ðXÞÞ; X ¼ ðX 1;X 2;X 3Þ: ð23Þ
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This scheme can be viewed as a Taylor expansion of the transition rate a�1ðXÞ in parameter �. In the case of Eq.
(22) we perturb only the reaction rate in the first reaction channel (r = 1, production of Cro), and functions
g1(X) are:
Fig. 7a
Girsan
weight
gRNAp
1 ðXÞ ¼ DGRNAp

RT

X 3

V e�
DGRNAp

RT

Z
� DGRNAp

RT
; ð24aÞ

gCroOR1
1 ðXÞ ¼ �e�

DGCroOR1
RT

DGCroOR1

RT

X 2

V þ ð
X 2

V Þ
2e�

DGCroOR1
RT

Z
ð24bÞ
For obvious reasons, it is hard to obtain the exact values of sensitivities oEðsbÞ
o�

but, intuitively, we can say that
any � > 0 leads to an increase of Cro production rate a1 (decrease in EðsbÞ) for the perturbation in DGRNAp and

to a decrease in a1 (increase in EðsbÞ) for the perturbation in DGCroOR1, i.e. oEðsbÞ
o�

< 0 for Eq. (24a), and oEðsbÞ
o�

> 0
for Eq. (24b).

Estimation of derivatives of the mean hitting time EðsbÞ for b = 10 calculated using methods based on the
symmetric difference scheme and our new path-weighted method are presented in Figs. 7a and 7b. Estimation
of sensitivities based on the weighted scheme based on N = 104 samples provides us with the estimate
oEðsbÞ

o�
¼ �193:09� 11:01 s for the sensitivity with respect to variation in DGRNAp, and oEðsbÞ

o�
¼ 11:45� 0:90 s

for the sensitivity with respect to variation in DGCro. The direct estimator based on the finite-difference scheme
does not produce a reliable estimate and its variance is several orders of magnitude higher than the variance of
the path-weighted method.

In the case of smooth functionals, the application of the stochastic weights method only provides a com-
putational speed-up in comparison to the finite difference method since there only half as many operations as
required. However, for the discontinuous F(Æ), the finite difference approximation produces large errors since
the contribution to be averaged is either zero or one. In this case, the weight method smooths the expectation
of the functional and also provides an additional two-fold increase in computational speed since the sampling
of trajectories is performed only once. We have also demonstrated that for certain classes of problems the
direct estimator does not provide reliable results while the method based on path-sample weighting scheme
demonstrates good convergence.
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6. Conclusions

Given the uncertainty in the parameters of the models of many system and given the desire to determine the
points of a system susceptible to failure or external control, sensitivity analysis provides a powerful addition to
the model analysis arsenal. For stochastic systems, the computational expense of such sensitivity analysis has
been prohibitive and few models, let alone stochastic models, explore the dependence of model predictions on
variation of the underlying parameters. Here we develop an efficient and accurate algorithm for estimating
these sensitivities. This can be accomplished efficiently by derivation of an appropriate expression for the sen-
sitivity derivatives through introduction of stochastic weights that are derived through use of the Girsanov
measure transformation. For chemical stochastic systems, the calculation involves adding just two more steps
to the inner loop of a traditional stochastic simulation algorithm [14]. Using the appropriate expression for the
sensitivity coefficients we have demonstrated that our new method converges more quickly and provides more
robust estimate of the sensitivity coefficient for a systems with non-smooth features.
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Appendix A

The usual approach to analyzing stochastic chemical systems is based on the Chemical Master Equation
(CME) description (see for example [26,15,14]). We shall take an approach utilizing a path sampling represen-
tation [33]. It can be shown that this approach is equivalent to CME. In particular, the dynamics of the com-
ponents of the state vector X can be expressed via counting processes Nr(t):
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X iðtÞ ¼ X ið0Þ þ
XR

r¼1

DmirNrðtÞ: ð25Þ
The increment of the reaction counting process Nr(t) at some generic moment of time t depends only on the
state of the system X(t�) just before this moment of transition t� = limd!+0(t � d) and is independent of the
whole history of the process X(t) up to time t, i.e. independent of the previous history of the process:
EðN rðt þ DtÞ � NrðtÞjXðt�ÞÞ ¼ arðXðt�ÞÞDt þOðDt2Þ: ð26Þ

As outlined above, we consider the family of solutions {X�(t)}tP0 parameterized by �, j�j < 1. Keeping only
low-order expansion with respect to the parameter � one can find that perturbation ‘‘tunes’’ the reaction rates
ar(X) by changing their intensity in the following way:
a�rðXÞ ¼ arðXÞð1þ �grðXÞÞ ¼ arðXÞY �
rðXÞ; ð27Þ
where we assume that function Y �
rðXÞ ¼ 1þ �grðXÞ is nonnegative. This condition can hold true for any

bounded function g(Æ) if the parameter � is chosen to be small enough in absolute value.
As noted before, the dependence of the intensity ar(Æ) of the driving process on parameters of the model, �,

and the state X�(t) makes the direct sensitivity analysis very difficult. In particular, it is not evident how to
compare the influence of two different values of � since different values may generate completely different tra-
jectories. It appears useful to search for an equivalent problem setting where the driving process is parameter

independent. The Girsanov’s measure transformation gives such opportunity [33,34,24]. In probability theory,
Girsanov’s theorem determines how stochastic processes change under changes in measure [35,33,24]. The the-
orem is especially important since it tells how to convert from the physical measure which describes the prob-
ability that an underlying process X(t), used in the calculation of uðk; xÞ ¼ E½F ðXð�ÞÞ�, will take a particular
value or values to a different probability measure P�, corresponding to the perturbed parameters of the model.
This is a useful tool for evaluating the value of sensitivity derivatives since it allows us to construct family of
the probability measures for the perturbation (27). We first construct the martingale process
MrðtÞ ¼ NrðtÞ �

R t
0

arðXðsÞÞds, i.e. EðMrðtÞÞ ¼ Mrð0Þ ¼ 0. If Y �
r > 0 then process Z�(t) can be viewed as a solu-

tion of the stochastic differential equation
Z�ðtÞ ¼ 1þ
Z t

0

ðY �
rðs�Þ � 1ÞZ�ðs�ÞdMrðsÞ; Z�ð0Þ ¼ 1; ð28aÞ
and Z�(t) is also a martingale with respect to P:
E½Z�ðtÞ� ¼ 1 ð28bÞ

One can interpret Z� as a Radon–Nykodim derivative [35,24] which relates measures P� and P corresponding
to the perturbed (� 6¼ 0) and unperturbed (� = 0) trajectories:
dP �

dP
¼ Z� ¼

Y
s6t

Y �
rðsÞ

DNrðsÞ exp �
Z t

0

ðY �
rðsÞ � 1ÞarðXðsÞÞds

� �
ð29Þ
and process M �
rðtÞ ¼ N �

rðtÞ �
R t

0
Y �

rðsÞarðX�ðsÞÞds is a martingale under measure P�. Our objective is the estima-
tion of the following expression and its derivatives:
u�ðxÞ ¼ E�½F ðX�ð�ÞÞjX�ð0Þ ¼ x� ð30Þ

While estimation of u�(x) can be performed in a straightforward manner, the following result gives us the
derivative of u�(x) with respect to parameter � around � = 0 in terms of the path-dependent weight W(Æ):
o

o�
u�ðxÞ ¼ E F ðXð�ÞÞ oZ�

o�
jXð0Þ ¼ x

� �
; ð31aÞ

W,
oZ�

o�
j�¼0 ¼

X
s6t

grðXðsÞÞDN rðsÞ �
Z t

0

grðXðsÞÞarðXðsÞÞds ¼
Z t

0

grðXðsÞÞMrðtÞ: ð31bÞ
It is not hard to see how high order derivatives given by Eq. (11) can be computed in a similar manner.



S. Plyasunov, A.P. Arkin / Journal of Computational Physics 221 (2007) 724–738 737
Appendix B. Asymptotic behavior of the weighted estimator

A weighted estimator is in many ways similar to the typical estimator in importance sampling framework
[36,37], in particular, it is unbiased due to the statistical properties of the likelihood process Z�(t) indepen-
dently of the properties of the function F(Æ). Variance of the weighted estimator merits a separate discussion.
Consider, for example, function F(Æ) which depends only on the final value of the process X(T) at the moment
t = T: F = F(X(T)). The Lindeberg central limit theorem for i.i.d. random variables can be invoked as follows:
1

N

XN

j¼1

ðF ðjÞW ðjÞ � E½F ðXðT ÞÞW ðT Þ�Þ ) z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½F ðXðT ÞÞW ðT Þ�

p ffiffiffiffi
N
p ð32aÞ
where z is standard Gaussian random variable, z � N(0,1). By the property of conditional expectation the var-
iance of the random variable F(X(T))W(T) is the same as variance of the product of two independent random
variables F(X(T))w(X(T)) where w(X(T)) stands for
wðXðT ÞÞ ¼ E W ðT ÞjXðT Þ½ � ð32bÞ
i.e. the conditional expectation with respect to the terminal value. Variance in Eq. (32a) is given by:
Var½F ðXðT ÞÞW ðT Þ� ¼Var½F ðXðT ÞÞ�Var½wðXðT ÞÞ�þVar½F ðXðT ÞÞ�E½wðXðT ÞÞ�2þVar½wðXðT ÞÞ�E½F ðXðT ÞÞ�2:
ð32cÞ
One can see that variance of the estimator given by (32c) depends on both the variance of the Monte Carlo
estimator of the function F, E½F ðXðT ÞÞ� and variance of the stochastic weights Var[w(X(T))]. If Var[F(X(T))] is
small then variance of the weights dominates expression (32c). This explains why traditional finite difference
scheme might have an advantage in estimation of the sensitivity of smooth functions.
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